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This paper reviews the number-theoretic concept of diaphony, a measure of

uniform distribution for number sequences and point sets based on a Fourier

theory approach, and its relation to crystallographic concepts like the largest

interplanar spacing of a lattice, the structure-factor equation and the Patterson

function.

1. Introduction

In considering the structure of matter and its elucidation by

diffraction experiments, the major focus historically was on

the well ordered cases represented by crystals in which atoms,

more often than not, arrange themselves into densely packed

structures of high symmetry.

Yet, various other states of order exist in-between the ideal

crystal and the ideal gas – a statement that remains true even if

one restricts oneself exclusively to the solid state – as do

various other means of their classification by concepts other

than those related to close-packing or symmetry.

One of these concepts, and as yet seemingly more familiar

to the mathematician than to the structural chemist or crys-

tallographer, is the notion of uniform distribution.

In the first instance, this notion is indeed a purely

mathematical one, resting on a principle of fairness. Say,

one has a discrete point set falling into a given continuous

interval, conveniently chosen to be the unit interval ½0; 1Þd

for the appropriate dimension d. Uniform distribution is

established if any chosen subinterval contains a subset of

points whose number matches the value one would expect

based on the size of the subinterval used for sampling. The

basic idea may be best illustrated by a pictorial representation

(Fig. 1). It should be noted, however, that the given definition

describes an ideal and limiting case. Although perfect uniform

distribution cannot be realized by any finite point set, its

inevitably existing irregularities of distribution can be quanti-

fied by suitably chosen geometrical measures, such as the

diaphony.

In yet another context, the notion of uniform distribution

may be augmented with some additional crystallographic

meaning, for instance by emphasizing the common founda-

tions used for the quantitative treatment of uniform distri-

bution as well as for the representation of crystal structures,

either by means of their real-space electron density/Patterson

function or their reciprocal-space diffraction intensity.

ISSN 2053-2733

Received 12 December 2014

Accepted 9 April 2015

Edited by H. Schenk, University of Amsterdam,

The Netherlands

Keywords: uniform distribution; geometric

discrepancy; diaphony; structure-factor

equation; Patterson function.

# 2015 International Union of Crystallography

http://crossmark.crossref.org/dialog/?doi=10.1107/S2053273315007123&domain=pdf&date_stamp=2015-05-29


2. On the uniform distribution of atoms in space

A crystal structure comprising N atoms within a unit cell may

be abstractly represented by a set P ¼ fx1; . . . ; xNg of N points

distributed within the unit cube ½0; 1Þ3. Let

ehðxÞ :¼ exp i2�hh; xið Þ ð1Þ

denote a complex exponential function of a real-space posi-

tion vector x ¼ ðx; y; zÞ and a dual-space index vector

h ¼ ðh; k; lÞ, with hh; xi denoting the usual scalar product, and

SNðeh;PÞ ¼
1

N

XN

j¼1

ehðxjÞ ð2Þ

a corresponding summation over all points. Here, the

prefactor 1=N effectively represents a scheme of unit weights.

Weyl’s criterion (Weyl, 1916) states that a sequence of

vectors xj 2 R
d is uniformly distributed modulo one, i.e. within

the unit hypercube ½0; 1Þd, if and only if

lim
N!1

SNðeh;PÞ ¼ 0 ð3Þ

holds true for any vector h 2 �� ¼ Zd
n f0g, where the specific

trigonometric sum SNðeh;PÞ is known as the h-th Weyl sum.

Note that, here and in the following, all formulas are stated for

the general d-dimensional case for which they were originally

derived, although their application within a crystallographic

context is covered almost exclusively by the case d ¼ 3, which

is highlighted by our use of three-dimensional vectors

x ¼ ðx; y; zÞ and h ¼ ðh; k; lÞ, whenever we focus on crystal

structures and their representation in real and dual space.

Weyl’s criterion is furnished with a possibly more intuitive

geometric interpretation (see, e.g., Dick & Pillichshammer,

2010, p. 49), schematically illustrated in Fig. 2. It corresponds

to mappings of N points xj in one dimension to the complex

unit circle [compare equations (1) and (2)] and the subsequent

determination of their centroids, performed for distinct values

of h. A balanced distribution of points is achieved, for any

given h, in exactly those cases where the centroid coincides

with the origin (including degenerate cases in which distinct

points coincide in their positions). Now, Weyl’s criterion states

that the overall degree of uniform distribution can be assessed

quantitatively by considering the individual balancings for all

h ranging from �1< h< þ1 and in the limit N!1.

Following Weyl’s pioneering work a vast number of

measures signifying uniform distribution or deviations thereof

have been introduced [see Matoušek (2010) for a concise

introduction as well as a more detailed survey given by

Hickernell in Hellekalek & Larcher (1998), pp. 109–166, and

especially pp. 125–142], among them various mutually related

yet distinct concepts known under the general names of

discrepancy or diaphony.

Crystallographic applications of discrepancy measures were

considered by Hornfeck (2013a) within a general context of

structural chemistry and exemplified by Hornfeck & Kuhn

(2014) regarding the description of a low-discrepancy variant

of the �-manganese structure exhibiting local octagonal

symmetry upon projection.

The concept of diaphony (from the Greek term describing

dissonance; compare symphony) was introduced by Zinterhof

(1976) in order to find a measure for uniform distribution

similar in scope to the classical discrepancy measures then

existing but by far more tractable from a computational

point of view, i.e. regarding the computational complexity,
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Figure 1
Uniform distribution of a point set, consisting of 16 points in two
dimensions. Since its construction relies on van der Corput’s one-
dimensional sequence, well known for its optimal equidistribution
properties [see, e.g., Kuipers & Niederreiter (1974), pp. 127–130], every
subinterval of area 1=16 contains exactly one point. One may expand this
point of view by replacing the sampling rectangles corresponding to the
integer factorizations 1� 16 ¼ 2� 8 ¼ 4� 4 ¼ 8� 2 ¼ 16� 1 (top row
and bottom left and middle) with generic axis-parallel rectangles (bottom
right) up to the point of using arbitrary shapes for sampling, thereby
creating a great many real-space measures of uniform distribution
summarized under the common name of geometric discrepancies.

Figure 2
Geometric interpretation of the Weyl criterion. A set of N ¼ 6 real
numbers is mapped to the complex unit circle via the complex
exponential expði2�hxjÞ. The image depicts two distinct distributions
(red dots) obtained by this mapping for the cases h ¼ 1 and h ¼ 2, as well
as their centroids (blue dots). The position of the centroid, by its vector
distance to the origin of the coordinate system, is a case-specific measure
for the uniform distribution of the points along the complex unit circle’s
arc. The Weyl criterion demands the individual balanced distribution for
all cases h 6¼ 0 and in the limit N!1. The same construction is valid
upon replacing the product of the scalar quantities h and xj for the one-
dimensional case with the scalar product of their vectorial counterparts h
and xj in higher-dimensional ones.



depending on the number of points N and the dimension of

space d, involved in its calculation. Indeed, the computational

complexity for the diaphony is Oðd � N2Þ while it is OðNdÞ for

the discrepancy (Hellekalek & Niederreiter, 1998).

Another distinction between discrepancy and diaphony

measures is due to their construction in real and dual space,

respectively. Although definitions may be phrased in either

space interchangeably, some choice often seems more natural

than others in distinct contexts, either depending on some

required property of the measure (e.g. translation invariance)

or having some specific application in mind.

Now, Zinterhof’s diaphony (Zinterhof, 1976) is defined as

FNðPÞ ¼
P

h2��
rðhÞ�2

� SNðeh;PÞ
�� ��2� �1=2

; ð4Þ

where

rðhÞ ¼
Yd

j¼1

max 1; jhjj
� �

ð5Þ

is a weight function based on the index vectors h with the hj

denoting their components. Stated in technical terms, Zinter-

hof’s diaphony represents a weighted L2 norm of the Weyl

sum SNðeh;PÞ, which itself is given by a weighted trigono-

metric sum of the point set P under consideration (see

Appendix A for more remarks on various notions of norms

and weights), which in turn is uniformly distributed in ½0; 1Þd if

and only if

lim
N!1

FNðPÞ ¼ 0: ð6Þ

Note that the sum of squares given in Zinterhof’s formula for

the diaphony [equation (4)] approaches zero asymptotically,

as N tends to infinity, if and only if this holds true for any of its

summands, thereby fulfilling Weyl’s criterion [equation (3)].

In the following we will show, mainly as a review and

crystallographic interpretation of existing results in metric

number theory, that specific choices of the norm and weights,

distinct from the aforementioned ones, have their well known

crystallographic counterparts and thereby confer a general

crystallographic meaning to the concept of diaphony as well.

3. A diaphony with specific LP norm: the largest
interplanar spacing of a lattice

The spectral test introduced by Coveyou & MacPherson

(1967),

�ðLÞ ¼
1

minh2�� hj j
; ð7Þ

is a figure of merit that is especially useful for the quantitative

assessment of linear and multiplicative congruential random-

number generators (Hellekalek & Larcher, 1998, pp. 49–

108), due to their intrinsic sublattice structure [on which

basis Hornfeck & Harbrecht (2009) and Hornfeck (2012,

2013b) discuss crystallographic applications of multiplicative

congruential generators].

Now, the outcome of equation (7) has a crystallographic

interpretation as it yields the maximal distance, max dhkl ,

between adjacent parallel net planes ðhklÞ, in which the

maximum is taken over all families of net planes spanning a

crystal’s lattice (Fig. 3; see, e.g., Hellekalek & Larcher, 1998,

pp. 79–89). Note that, in contrast to this real-space geometric

interpretation, the spectral test, as its name suggests, really

works in dual space, determining the length, i.e. the Euclidean

norm jhj ¼ ðh2 þ k2 þ l2Þ
1=2, of the shortest, non-vanishing

Miller index vector h 2 �� and returning its reciprocal value.

While this classical spectral test thus by design only works

for lattice point sets L, a variant employing weighted Weyl

sums SNðeh;PÞ is applicable for general point sets P with or

without an underlying lattice structure:
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Figure 3
Geometric interpretation of the spectral test. Depicted is a series of point
patterns consisting of 17 nodes each (red dots) generated by the
multiplicative congruential method. Hence, the fractional coordinates of
all nodes within a unit square ½0; 1Þ2 are represented as ðx; yÞ ¼ ðX;YÞ=17
with their integral coordinates ðX;YÞ related as Y ¼ mX ðmod 17Þ, i.e.
via a multiplication followed by a division with a remainder. While X runs
smoothly from 0 to 17, tracing out a torus line of slope m, a sublattice
structure is generated with every integral value of X creating a node.
Now, any given set ðh; kÞ of parallel lines in a two-dimensional lattice is
characterized by its perpendicular interplanar spacing dhk. A maximum
value max dhk will be taken for the unique set featuring a maximum
density of lattice points along its parallel lines, thereby specifying the
distribution properties of the nodes within a given sublattice designated
by m. Note that max dhk diminishes for increasing values of m until it
reaches a global minimum for m ¼ 4, the case of a square sublattice with
an optimum uniform distribution of its nodes (since the cases with
m ¼ 9þ n are mirror images of the ones with m ¼ 8� n, with respect to
the y axis, an equivalent solution is given by m ¼ 13).



�NðPÞ ¼ suph2��
SNðeh;PÞ

rðhÞ

����
����: ð8Þ

Again, as

lim
N!1

�NðPÞ ¼ 0 ð9Þ

holds true for point sets satisfying Weyl’s criterion, �NðPÞ is a

measure of uniform distribution. For the special case of lattice

point sets L the Weyl sum becomes

SNðeh;LÞ ¼
1 for h 2 ��

0 otherwise

n
; ð10Þ

thereby reducing the general definition of equation (8) to the

particular one of equation (7), i.e. for the choice of r(h) = |h|.

Moreover, identifying

TðPÞ ¼
SNðeh;PÞ

rðhÞ

� �
h2��

ð11Þ

emphasizes that the spectral test for general point sets

�NðPÞ ¼ TðPÞ
�� ��

1
; ð12Þ

applying the L1 norm, is merely a variant of Zinterhof’s

diaphony

FNðPÞ ¼ TðPÞ
�� ��

2
; ð13Þ

applying the L2 norm, instead (Hellekalek & Larcher, 1998,

p. 90). Contrariwise, Zinterhof’s diaphony can be conceived as

a weighted spectral test (Hellekalek & Niederreiter, 1998).

These interrelations of the diaphony with the spectral test and

other measures of uniform distribution are explored in greater

detail by Dick & Pillichshammer (2005), while generalized,

hybrid variants of the spectral test are discussed by Hellekalek

(see a corresponding chapter in Kritzer et al., 2014).

4. A diaphony with specific inner weights: the structure
factor

While Zinterhof’s original definition of the diaphony

employed unit weights of 1=N in the expression of the expo-

nential sum SNðeh;PÞ, this was subsequently extended (Lev,

1995) to non-negative real weights, �j � 0, yielding a gener-

alized diaphony,

FNðPÞ ¼
P

h2��
rðhÞ�2

�
PN
j¼1

�j � ehðxjÞ

�����
�����

2" #1=2

; ð14Þ

instead.

Applying only a slight change of notation, the kind of

exponential summation proposed by Lev is analogous to the

one applied by crystallographers in the structure-factor equa-

tion:

Fh ¼
PN
j¼1

fj � ehðxjÞ; ð15Þ

in which the weights are replaced, most naturally, by the

atomic form factors fj.

The structure factor denotes the relation of a given crystal

structure to its diffraction pattern, in which physical atoms

replace mathematical points in real space while the mathe-

matician’s dual lattice �� is represented by the crystal-

lographer’s reciprocal one. Specifically, a crystal structure’s

representation in real and dual space is interrelated via a

Fourier transform,

%ðxÞ ¼
1

V

X
h2��

Fh � ehðxÞ
�1; ð16Þ

based on structure factors. Here, %ðxÞ is the real-space electron

density (continuous in x).

In fact, more commonly it is the inverse problem, i.e. to

deduce a crystal’s structure, the specific arrangement of its

atoms in space, from its experimentally observable diffraction

pattern, that attracts the attention of the crystallographer

[indeed, the current definition of a crystal relies solely on the

appearance of its diffraction pattern, namely its ‘essential

discreteness’; for a treatment of mathematical diffraction

theory which covers the subtleties, and to some extent neces-

sities, of such rather imprecise definitions see Baake & Grimm

(2011, 2012)]. This inverse problem is greatly complicated by

the structure factor being a complex quantity, i.e. a phasor

Fh ¼ jFhj expði’hÞ, composed of a complex modulus (ampli-

tude) jFhj and a complex argument (phase) ’h. The intensity

Ih, however, as the observable of a diffraction experiment, is

related to the square of the modulus, i.e. Ih / jFhj
2. Thus,

while the amplitude jFhj of a structure factor can be easily

recovered from a scattering experiment, its phase ’h,

exceedingly more important for the reconstruction, is lost,

resulting in the so-called phase problem of crystallography.

Notwithstanding, from the aforementioned similarity

between the weighted Weyl sum and the structure-factor

equation and the well known fact that jFhj
2
/ Ih, it is imme-

diately clear that a crystallographic measure for the uniform

distribution of atoms in space could be based on a diaphony

on intensities (or calculated/observed squared structure factors

for that matter).

One should note, however, a subtle yet inevitable difference

in the number-theoretic and crystallographic definitions.

Whereas the number-theoretic case features a point set as a

sum of delta distributions, this is replaced by a sum of spatially

extended atoms in the crystallographic case. In particular, this

affects the specific nature of the inner weights, regarding their

dependency on the dual-space scattering vector – which is a

constant for each point scatterer in the case of Lev’s weights

(i.e. corresponding to a real-space delta distribution after

Fourier transformation) but varying with ðsin �Þ=� in the case

of the atomic form factors. Naturally, this difference is

mirrored in the measured intensities, or its corresponding

diaphony, too.

5. Sketches of uniform distribution I: special cases

In the following we would like to convey some of the afore-

mentioned ideas by amending the previous quantitative
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mathematical definitions with more qualitative views

regarding their crystallographic interpretation. For this

purpose we illustrate some exceptional as well as general cases

with respect to their uniform distribution properties. All the

sketches shown depict the real-space distributions of point

scatterers placed within the interval ðx; yÞ 2 ½0; 1Þ2 (a crystal-

lographer’s unit cell in two dimensions, x to the right, y

upwards; Figs. 4 to 6, top) with their respective diffraction

patterns in reciprocal space restricted to the interval

ðh; kÞ 2 ½�7; 7�2 (k to the right, h downwards; Figs. 4 to 6,

bottom). In order to evoke some intuition we choose to

compare three pairs of limiting cases and their characteristics

contrasting each other.

First, let us consider the simplest realization of a discrete

point set: a single point, representing a crystal structure,

periodic in two dimensions, consisting of one atom per unit

cell (Fig. 4, left). Irrespective of its exact location within the

real-space unit cell its diffraction pattern in reciprocal space

remains invariant and, in fact, equidistributed with respect to

the intensity associated with any scattering vector h. On the

other hand, the ideal case of uniform distribution is given by a

continuous density distribution of scattering matter (Fig. 4,

right). In Fourier space this corresponds to a single �-peak at

the origin, representing the average scattering magnitude. In

the special case of X-ray diffraction the structure factor F00

yields the total number of electrons per unit cell. Both cases

represent the limiting cases of uniform distribution – although

one may wonder why they appear different in the first place,

since the Fourier transform of a single peak in real space yields

a uniform distribution in reciprocal space, and vice versa. The

reason for this is that the depicted real-space point patterns

always have to be extended periodically (especially note-

worthy regarding the top-left part of Fig. 4), i.e. only the unit

cells of the point patterns are depicted, while, on the other

hand, the intensity-weighted reciprocal lattice lacks transla-

tional symmetry.
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Figure 5
Special cases of uniform distribution I: the spectral test for sublattices.
Reviewing the cases m ¼ 1 and m ¼ 4, as presented in Fig. 3, it turns out
that the amount of area enclosed by the hyperbolas jh � kj ¼ "ðmÞ
(depicted in grey) for some "ðmÞ> 0 – while adapting to the shortest, non-
vanishing reflection hk closest to the origin – differs for the cases m ¼ 1
and m ¼ 4, thereby matching the different degree of uniform distribution
found in the corresponding (lattice) point set. Note that the nodes of the
reciprocal lattice are highlighted by small solid circles in grey and should
not be confused for reflections.

Figure 6
Special cases of uniform distribution II: quasi-random versus pseudo-
random point sets. Note the comparative absence or presence of point
clustering and void formation for the quasi-random and pseudo-random
point set, respectively, as well as the comparative absence or presence
of intensity close to the origin. In particular, a single contour line is
shown (depicted in red), corresponding to the weight function
rðhÞ ¼ maxð1; jhjÞ �maxð1; jkjÞ used in the definition of the diaphony,
highlighting a region of vanishing intensity in the quasi-random case. As
an aside, the anisotropy of the product weights as defined in equation (5)
is visible: the ‘octagonal’ shape of the contour line, featuring alternating
planar and concave edges, indicates the decay of the weights proceeding
as 1=r2 along the axes and as 1=r4 along the diagonals, with r denoting the
radial distance from the origin.

Figure 4
Limiting cases of uniform distribution: discrete versus continuous
distributions. In a way both cases represent a uniform distribution, either
with respect to the intensity distribution found in reciprocal space
(discrete case) or regarding the homogeneous density in real space
(continuous case). Here, the discrete case is represented by a single point
scatterer (and its translated copies outside the depicted frame), where the
red arrows are meant to indicate that the intensity distribution is
independent of the exact position of the scatterer within the unit cell.
Note that the continuous case of uniform distribution is characterized by
the presence of a single �-peak at the origin and the absence of intensity
elsewhere. This tell-tale feature of uniform distribution cannot be
realized in the discrete case, except for some finitely bounded region
about the origin of reciprocal space (compare Figs. 5 and 6).



Second, we consider the special cases of point sets with a

sublattice structure. As mentioned before, a measure of

uniform distribution for these point sets is given by the

spectral test. While we focused on the largest interplanar

spacing of a lattice before, we now show its relation with the

diffraction pattern. For this purpose we compare the diffrac-

tion patterns of the sublattices generated by the multiplicative

congruential generators Y ¼ mX ðmod 17Þ and consisting of

17 points for the cases m ¼ 1 (Fig. 5, left) and m ¼ 4 (Fig. 5,

right). As expected, and demanded by the very definition of

the spectral test, the non-vanishing reflection observed closest

to the origin specifies the uniformity of distribution via its

Euclidean norm jhj ¼ ðh2 þ k2Þ
1=2. Since jhj ¼ 21=2 for

h ¼ �1; k ¼ 1 in the case m ¼ 1 and jhj ¼ 171=2 for

h ¼ �4; k ¼ 1 in the case m ¼ 4 the spectral test yields

�ðm ¼ 1Þ ¼ 1=21=2 ’ 0:707 and �ðm ¼ 4Þ ¼ 1=171=2 ’ 0:243,

respectively, thereby qualifying the case m ¼ 4 as the one

being more uniformly distributed (compare Fig. 3). This

outcome may be illustrated in another way, namely by a

representation of the different extent to which the region close

to the origin features an absence of intensity (Fig. 5; compare

Matoušek, 2010, p. 74).

Third, we consider the special cases of quasi-random and

pseudo-random point sets. The chosen quasi-random point set,

consisting of 16 points (Fig. 6, left), corresponds to the one

constructed from the van der Corput sequence already

mentioned in x1. The pseudo-random point set represents 16

random points according to the random-number generator

implemented in Mathematica (Fig. 6, right). From their

diffraction patterns some differences can be spotted regarding

the occurrence of comparatively stronger intensities for

higher-order reflections for the quasi-random case with

respect to the pseudo-random one and, more importantly, a

different extent of vanishing intensity close to the origin. This

is a signature of the different degree of uniform distribution,

since the diaphony is lower in those cases for which the

intensity closer to the origin is diminished, thereby precluding

strong reflections occurring in this region for quasi-random

point sets.

6. Sketches of uniform distribution II: the general case

Overall, and despite the given examples, it does not appear to

be easy to find a general relation between the uniform

distribution of atoms in space, the corresponding value of the

diaphony and the total intensity distribution resulting from a

diffraction experiment.

A suitable approach, in our opinion, is to treat this question

in the context of a sampling problem. Then, a qualitative

impression is based on the idea that the plane waves ehðxjÞ

used in the definition of the diaphony and the net planes ðhklÞ

occurring in a crystal likewise scan their corresponding

discrete structures spatially, irrespective of whether they are

composed of abstract points or actual atoms. For any given

family of plane waves or net planes, a specific sampling

interval along the perpendicular direction corresponds to the

wavelength of the plane waves or the interplanar spacing dhkl

of the net planes.

In those cases where the interplanar spacing dhkl matches

the array of atoms (points), up to the case of being in perfect

registry, a considerable probability exists for the corre-
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Figure 7
Weyl sum representation of structure factors I: comparison of a
conventional plot of the amplitude jShkj and phase ’hk of a unit-weight
structure factor Shk ¼ 1=N �

PN
j¼1 ehkðxjÞ calculated for the N ¼ 16 van

der Corput point set in two dimensions (top; compare Fig. 1) with a
second one emphasizing the uniform distribution for a given index pair h
and k using the geometric interpretation of the Weyl criterion (bottom;
compare Fig. 2). The values of amplitude jShkj and phase ’hk are encoded
via the circle radius and hue (top) and the centroidal distance and
direction (bottom). In the latter case the Shk is directly related to the
varying uniformity of distribution, highlighted by the cyclotomic point
sets. Note that along the special directions ½h0� and ½0k� the cyclotomic
point sets represent the individual behaviour of the x and y coordinates of
the points, which show perfect equidistribution corresponding to their
construction from multiples of 1/16.



sponding reflection hkl to be strong, i.e. having a large struc-

ture-factor amplitude jFhj. Moreover, if the collection of

atoms (points) exhibits a perfect sublattice structure, only a

few net planes will fulfil this condition; hence only a few

reflections will collect all the intensity (compare Fig. 5), and

the spectral test rather than the diaphony is the appropriate

measure of uniform distribution.

The same observation is true, in principle, for a general set

of atoms (points), although one has to keep in mind that the

diaphony is a global measure of uniform distribution and, by

its very definition as an average rather than a worst-case

quantity (i.e. as an L2 rather than L1 norm), is therefore

affected by all kinds of subtle spatial correlations being

present in the set of atoms (points) under consideration.

Notwithstanding these limitations, a non-trivial conclusion can

be drawn from a trivial fact. As every crystallographer knows,

the intensity modulation of a diffraction pattern in reciprocal

space represents a real-space atomic distribution, yet, and

more specifically, it also is a measure of its spatial uniformity,

eventually yielding the diaphony measure of the mathemati-

cian.

In particular, the phasor description of the structure factor

is related to the geometric interpretation of the Weyl sums

used in the definition of the diaphony (Fig. 7). That is to say, if

a given reflection hkl is strong, its Weyl sum representation,

too, exhibits strong deviations from a uniform distribution.

The plot thereby connects a structure factor’s complex

amplitude and phase with the equidistribution properties of

point sets on the complex unit circle – akin to the cyclotomic

points sets discussed by Patterson (1944) – in which the

specific locations of the points are ultimately associated, via a

weighted variant of the Weyl sum, with a crystal structure’s

atomic coordinates (Fig. 8)!1

7. Zinterhof’s diaphony and the Patterson function

As a matter of fact, a mathematically equivalent definition of

the diaphony exists, namely

FNðPÞ ¼
1

N2

XN

	¼1

XN


¼1

K x	 � x

� �

� 1

" #1=2

ð17Þ

in the case of unit weights (Zinterhof, 1976), and

FNðPÞ ¼
PN
	¼1

PN

¼1

�	�
 � K x	 � x

� �

� �2

" #1=2

ð18Þ

in the case of variable weights (Lev, 1995), with � ¼
PN

j¼1 �j

the sum of all weights and

KðxÞ ¼
Yd

j¼1

1þ 2�2B2 xj

� 	� �
 �
: ð19Þ

Here, B2ðxÞ ¼ x2 � xþ 1=6 is the second Bernoulli poly-

nomial, while fxjg denotes the fractional (modulo one) part of

the coordinate xj.

Skipping the mathematical details for the moment, and

focusing on the crystallographic interpretation instead, one

has to note that the above definition of the diaphony solely
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Figure 8
Weyl sum representation of structure factors II: shown are graphical
depictions of the Weyl sums for a set of two points and with h ranging
from h ¼ 0 to h ¼ 5 and a corresponding linearization. The determina-
tion of the x coordinates of the points (a ‘structure solution’) is
transformed from a uniform distribution problem stated on the complex
unit circle and in terms of phase angles into an equivalent one stated on
the real number line and in terms of linear slopes. Here, fxjhg denotes the
fractional (i.e. modulo one) part of xjh, a straight line of slope xj in the
variable h (one such line is highlighted by dashes). Note that the depicted
example represents the very simple case of a one-dimensional, equal-
atom structure with atomic form factor set to unity and therefore differs
from that of an actual crystal structure and its corresponding diffraction
pattern.

1 Note that in an actual diffraction experiment some additional complication
arises from the precise distribution of distinct atomic species, differing in their
electron count and thus their X-ray scattering cross section, thereby resulting
in contorted contributions of subsets of points to the structure-factor
amplitudes. In particular, three (interrelated) effects have to be considered:
(i) the replacement of unit weights 1=N by atomic form factors fj, (ii) their
distinct normalization to unity or some other value, and (iii) their
(in)dependence on the scattering vector. These effects alter the geometric
interpretation of the Weyl sum and the associated problem of uniform
distribution, eventually yielding the structure factor.



depends on real-space difference vectors x	 � x
. Thus, the

number-theoretic concept of diaphony is closely related to

Patterson’s approach of structure solution (Patterson, 1934,

1935; Rossmann & Arnold, 2006) and, in particular, to the

Patterson function

PðuÞ ¼
1

V

X
h2��

ehðuÞ
�1
� Fh

�� ��2; ð20Þ

in which u ¼ ðu; v;wÞ denotes a general real-space vector

[compare equation (16)]. Relying solely on intensities, i.e.

jFhj
2, as experimental observables, it addresses the phase

problem of crystallography to the effect of yielding an

interatomic distance vector map, in which relative interatomic

distances and directions, occurring in a crystal structure, are

preserved, while information about the exact position of the

atoms and the absolute structure is lost. Since jFhj
2
¼ Fh � F�h,

where F�h denotes a complex conjugate, and the Fourier

transform of a product is related to a convolution (�), the

Patterson function can be expressed as the autocorrelation

function of the electron density: PðuÞ ¼ %ðxÞ � %ð�xÞ.

Although equation (20) seems to recover some of the

functional relationship of the Weyl sum or Zinterhof’s

diaphony, it is clear that the term ehðuÞ
�1 does not obey the

conditions for proper outer weights as demanded and stated

before (compare Appendix A).

Yet, a probabilistic interpretation may be given to the

Patterson function, namely that of a probability distribution

quantifying the frequency of occurrence of a given interatomic

distance vector. The diaphony as a scalar quantity is then

conceived as a characteristic number obtained by averaging

the kernel KðxÞ with respect to this distribution. In this sense

the diaphony represents an expectation value of the auto-

correlation function and as such resembles similar quantities,

such as moments or cumulants, which are commonly used to

characterize the shape of a distribution [see Prince (2004), pp.

69–72, for a crystallographic application with respect to the

structure-factor equation].

Thus, while the diaphony is not directly related to the

Patterson function, it shares some of its essential features, due

to its dependence on relative instead of absolute positions,

summarizing the (uniform) distribution of interatomic

distances within a single quantifier. Furthermore, the mathe-

matical equivalence of Zinterhof’s two definitions for the

diaphony establishes the exact numerical correspondence, via

Bernoulli polynomials, between the dual-space intensity

distribution and the real-space distance set viewpoints

[equations (4) and (17), respectively].

Finally, one should note that the diaphony is an invariant of

homometric structures (Patterson, 1944), as is the case for the

squared structure factors jFhj
2, since homometric structures

are characterized by sharing the same interatomic distance

vector set (including multiplicities) despite being neither

congruent nor enantiomorphic to each other.

8. A crystallographic diaphony

Combining the aforementioned definitions of Lev’s diaphony

into a single expression and rephrasing it in crystallographic

notation yields P
h2�� rðhÞ�2

� Fh

�� ��2PN
	¼1

PN

¼1 f	f
 � K x	 � x


� �
� f 2
¼ 1; ð21Þ

again introducing atomic form factors as the crystal-

lographically appropriate weights (where f ¼
PN

j¼1 fj).

As noted above, this equation is strictly valid only for the

ideal case of point scatterers, whereas otherwise the summa-

tions in the denominator have to be replaced by integrals in

order to account for the dependency of the atomic form

factors on ðsin �Þ=�. Alternatively, the atomic form factors

could be treated as constants, e.g. via replacing the fj by the

corresponding atomic numbers, since fj ¼ Zj for ðsin �Þ=� ¼ 0.

The problem of extended atoms is well known for blurring

the structural information contained in a Patterson map, and

appears even more pronounced in practice due to additional

contributions regarding the thermal motion of atoms around

their barycentres. In fact, it was already treated by Patterson

(1935), who suggested using a modified set of sharpened

structure factors jFh;sharpj
2
¼ jFhj

2=hf i2, where hf i is the

average scattering factor per electron, defined as

hf i ¼
PN
j¼1

fj=
PN
j¼1

Zj; ð22Þ

with Zj the atomic numbers of the elements involved.

In a way, Zinterhof’s mathematically equivalent definitions

of the diaphony reflect the fact that the same concept may be

described just as well in dual as in real space, with the

enumerator and denominator of equation (21), based on a

summation over dual-space intensities and real-space inter-

atomic distances, respectively, being in an exact mathematical

correspondence.

Thus, with the enumerator known from a diffraction

experiment, and the denominator describing the sought-for

crystal structure, equation (21) in principle describes the

process of structure solution within a single formula,

demanding the quotient to converge to unity once the correct

structure is established.

Whether this could lead to a practical improvement of

current structure solution algorithms based on the Patterson

method, e.g. by facilitating a novel strategy for peak shar-

pening, is not clear. It may, however, be suited for the quan-

titative evaluation of intermediate structure candidates with

already established methods of uniform distribution theory,

and may also open up a new perspective regarding the way of

thought within the field of structure solution methods.

9. Conclusion

Summarizing, we have shown that well known concepts of

uniform distribution theory (various notions of the diaphony

including the spectral test for lattice point sets) match well

known concepts of crystallography (the largest interplanar

research papers
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spacing of a lattice, the structure-factor equation, the

Patterson function) most likely not being noticed (?), at least

in their full significance, by practitioners in either field, most

probably due to the cumbersome issue of speaking different

‘languages’.

Envisaged crystallographic corollaries are: (i) the estab-

lishment of a connection of the phasor description of the

crystallographic structure factor with the geometric inter-

pretation of the Weyl sum taken from uniform distribution

theory (see Fig. 7); (ii) the design of a crystallographic

diaphony measuring the uniform distribution of atoms in

space based on observed diffraction intensities; and (iii) the

combination of Zinterhof’s mathematically equivalent defini-

tions for the diaphony within a single formula [equation (21)]

augmented by its crystallographic interpretation in the realm

of crystal structure solution methodology.

APPENDIX A
On norms and weights

In the most general way, the Lp norm (p � 1) of a p-integrable

function f on a measure space S with measure 	 is defined as

the integral

f
�� ��

p
¼

Z
S

jf jp d	

0
@

1
A

1=p

: ð23Þ

Since �� is a discrete set the integral of equation (23) is

replaced by a sum in equation (4).

For p!1 one obtains the special case of the L1 norm

lim
p!1

f
�� ��

p
¼ f
�� ��

1
¼ sup

x2S

jf ðxÞj; ð24Þ

with the supremum denoting the least upper bound. In many

practical cases the supremum of a set simply coincides with its

maximum, that is to say in those cases where the supremum

itself is a part of the set. Moreover, and colloquially speaking,

the L1 norm describes the worst-case behaviour, whereas the

L2 norm gives an averaged estimate on the uniformity of

distribution (Matoušek, 2010).

Natural generalizations of Zinterhof’s diaphony concern

the choice of the Lp norm and the application of different

weighting schemes, aside from applying distinct function

systems other than trigonometric, e.g. by considering Walsh

instead of Fourier basis functions. Note that there are two sets

of weights involved in the definition of the diaphony, which

should not be confused: one set with respect to the Weyl sum,

which could be termed inner weights, e.g. 1=N as in equation

(2), another one regarding the expression of the Lp norm,

which could be termed outer weights, e.g. rðhÞ�2 as in equation

(4), accordingly.

These outer weights may be chosen at will, say according to

some specified global properties of the diaphony in mind

[Hameren et al. (1997) discuss various possibilities], albeit in

such a way as to guarantee a sufficiently fast decline regarding

the contributions of higher Fourier modes. In particular, one

demands the outer weights fulfil the following criteria: (i)

rðhÞ> 0 for all h; (ii) rð0Þ ¼ 1; and (iii)
P

h rðhÞ�2 <1 (see,

e.g., Hellekalek & Larcher, 1998, p. 90).

APPENDIX B
On the equivalence of the diaphony definitions

The classical diaphony of Zinterhof appears in a twofold form,

as stated in the seemingly unrelated equations (4) and (17), or,

in the generalization of Lev, equations (14) and (18), respec-

tively. Transcribed into crystallographic terms, combined into

the single equation (21), this alleged dichotomy was all the

more accentuated by invoking the contrasting perceptions of

real and reciprocal space. Naturally, both representations are

connected, and their equivalence is demonstrated by the fact

that the Bernoulli polynomials can be replaced by their

Fourier series expansion:

B2ðxÞ ¼
1

2�2

X
h 6¼0

exp i2�hxð Þ

h2
: ð25Þ

Thus, after some algebraic rearrangements, the kernel of

equation (21) may be restated as

Kðx	 � x
Þ ¼ 1þ
P

h2��
rðhÞ�2

� eh fx	 � x
g
� �

: ð26Þ

Note that one may also introduce a splitting of terms

according to

eh fx	 � x
g
� �

¼ eh x	
� �

eh x
ð Þ; ð27Þ

thus performing the summation over independent atomic

positions rather than their interatomic distances (where

h ¼ �h, hence denoting a complex conjugate in the expo-

nential). Some further calculation and final rearrangement of

terms prove the identity of the denominator with the

numerator [since the summations over the ehðxjÞ’s always

include all atomic positions and the aforementioned splitting

emphasizes the squaring of a complex number by multi-

plication with its complex conjugate].
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